On Hermite-fejer Type Interpolation on the Chebyshev Nodes

نویسندگان

  • GRAEME J. BYRNE
  • SIMON J. SMITH
چکیده

ON HERMITE-FEJER TYPE INTERPOLATION ON THE CHEBYSHEV NODES GRAEME J. BYRNE, T.M. MILLS AND SIMON J. SMITH Given / £ C[-l, 1], let Hn,3(f,x) denote the (0,1,2) Hermite-Fejer interpolation polynomial of / based on the Chebyshev nodes. In this paper we develop a precise estimate for the magnitude of the approximation error |£Tn,s(/,x) — f(x)\. Further, we demonstrate a method of combining the divergent Lagrange and (0,1,2) interpolation methods on the Chebyshev nodes to obtain a convergent rational interpolatory process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lebesgue Function for Generalized Hermite-fejer Interpolation on the Chebyshev Nodes

This paper presents a short survey of convergence results and properties of the Lebesgue function kmn(x) for (0, 1 , . . . , m) Hermite-Fejer interpolation based on the zeros of the nth Chebyshev polynomial of the first kind. The limiting behaviour as n -*• oo of the Lebesgue constant Amn = max{Xm n(x) : — 1 < x < 1} for even m is then studied, and new results are obtained for the asymptotic ex...

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

NEW ALGORITHM , S FOR POLYNOMIAL AND TRIGONOMETRIC INTERPOLATION ON PARALLEL COMPUTERS by Ilan Bar -

An interpolation polynomial of order N is constructed from p indepen­ dent subpolynomials of order n '" Nip. Each such subpolynomial is found independently and in parallel. Moreover, evaluation of the polynomial at any given point is done independently and in parallel, except for a final step of summation of p elements. Hence, the algorithm has almost no commu­ ,:.. nication overhead and can be...

متن کامل

Approximation by max-product type nonlinear operators

The purpose of this survey is to present some approximation and shape preserving properties of the so-called nonlinear (more exactly sublinear) and positive, max-product operators, constructed by starting from any discrete linear approximation operators, obtained in a series of recent papers jointly written with B. Bede and L. Coroianu. We will present the main results for the max-product opera...

متن کامل

Lebesgue constants in polynomial interpolation

Lagrange interpolation is a classical method for approximating a continuous function by a polynomial that agrees with the function at a number of chosen points (the “nodes”). However, the accuracy of the approximation is greatly influenced by the location of these nodes. Now, a useful way to measure a given set of nodes to determine whether its Lagrange polynomials are likely to provide good ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008